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ABSTRACT

Tuberculosis (TB) remains a critical global health challenge, particularly in resource-constrained
settings where timely and accurate diagnosis is essential for effective disease management and
control. Traditional diagnostic methods, such as Ziehl-Neelsen (ZN)-stained sputum microscopy,
are widely employed for detecting Mycobacterium tuberculosis; however, these techniques are
inherently subjective and prone to variability due to their reliance on manual interpretation. In
response, an increasing body of research has applied deep learning (DL)-based approaches to
automate TB detection from microscopy images. This systematic review synthesizes findings from
67 studies that have explored various machine-learning techniques for TB diagnosis using ZN-
stained images. A structured literature search was conducted across multiple scientific databases,
including PubMed, IEEE Xplore, Scopus, and ScienceDirect. Studies were selected based on their
focus on DL applications for TB detection using ZN-stained images. The reviewed methodologies
encompass various stages, including image preprocessing, feature extraction, classification strategies,

and performance evaluation metrics. Our review

reveals that DL models, particularly those
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employing automated feature extraction and
classification, are predominantly used, with some
studies reporting accuracies of up to 100%. This
review provides a comprehensive overview of
state-of-the-art methodologies, including image
preprocessing, feature extraction, classification
strategies, and performance evaluation
metrics. Notably, the evidence indicates that
convolutional neural network (CNN)-based
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approaches offer the highest promise due to their robust ability to detect subtle features in stained
images. Consequently, future research will focus on developing and optimizing CNN-based models
to further enhance TB detection, ultimately improving diagnostic outcomes and supporting more
effective TB control strategies.

Keywords: Convolutional neural network, hybrid machine learning, medical image processing, tuberculosis
detection, Ziehl-Neelsen staining

INTRODUCTION

TB remains a significant global health challenge, caused by Mycobacterium tuberculosis,
which usually affects the lungs but can spread to other organs. According to the World
Health Organization (WHO), in 2024, Malaysia reported an incidence of 74 new and relapse
TB cases per 100,000 population and 3,140 TB-related deaths. These figures underscore
the significant public health challenge posed by TB in the country (WHO, 2024). TB is
an airborne infectious illness transmitted when people with active pulmonary TB cough,
sneeze, talk, sing, or laugh. It mostly affects the lungs, but it may also impact the spine,
brain, and kidneys. Although TB transmission requires prolonged and close contact, its
latent form (latent tuberculosis infection or LTBI) allows the bacteria to persist within
the host for years without causing symptoms, only becoming active when the immune
system is compromised (Tobin & Tristram, 2024). However, comprehensive data on
LTBI prevalence in Malaysia remains limited. A study by MacLean et al. (2020) using
the tuberculin skin test (TST) reported an LTBI prevalence of 68.20% among inmates in
Malaysian prisons, indicating significant latent transmission reservoirs. The high burden of
TB and LTBI necessitates advancements in diagnostic approaches to ensure timely detection
and treatment, particularly in resource-limited settings where conventional methods face
significant challenges. Many individuals with active TB may not immediately realize they
are infected, as the disease can sometimes develop slowly over weeks or even months
without showing noticeable symptoms (Suliman et al., 2019). When symptoms do appear,
they often resemble those of common illnesses such as the flu and may include fever, weight
loss, persistent cough, and fatigue. Since TB can take up to six weeks to manifest, delayed
detection contributes to continued transmission (Nor et al., 2021). Figure 1 illustrates that
an individual with active TB can unknowingly transmit the bacteria to a healthy person,
underscoring the urgency for improved early detection methods (Cambier et al., 2014).
TB diagnosis traditionally involves multiple laboratory techniques, including chest
radiography, computed tomography (CT) scans, and microbiological assessments of sputum
samples. Among these, Ziehl-Neelsen ZN staining for sputum smear microscopy remains
one of the most widely used diagnostic techniques in resource-limited settings, as it enables
direct visualization of acid-fast bacilli (AFB) under a microscope (Ghosh et al., 2022; Surani
et al., 2021). Figure 2 displays an image of TB detected using ZN-stained microscopy.
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Figure 1. Development of tuberculosis illustration (Cambier et al., 2014)
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of TB bacilli under ZN staining includes Figure 2. Tuberculosis was detected using Ziehl-
curved, rod-shaped bacteria, often wrapped Neelsen-stained microscopy under 40x magnification
together in cord-like formations. While this

staining method provides a direct way to detect TB, it is highly time-consuming since
researchers or pathologists must manually examine microscopic fields to locate the tiny
bacilli. Given that TB bacteria measure approximately 1-2 micrometers, detecting them
requires magnification of at least 40%, making the process labor-intensive and prone to
human error. These challenges highlight the urgent need for advanced technologies, like
machine learning (ML), to enhance TB diagnosis efficiency and reduce diagnostic errors
associated with manual interpretation.

The application of artificial intelligence (Al) and ML in TB detection has shown
considerable potential in improving accuracy, efficiency, and automation (Hooda et al.,
2017; Lakhani & Sundaram, 2017). CNNs, a class of DL models specialized in image
processing, have demonstrated remarkable performance in medical image classification.
Studies have validated CNN-based approaches for TB detection using chest X-rays,

Pertanika J. Sci. & Technol. 33 (6): 2441 - 2464 (2025) 2443



Nur Amirah Kamaluddin, Murizah Kassim, Nor Salmah Bakar and Shuria Saaidin

achieving high diagnostic accuracy and significantly reducing the time required for analysis
(Mujeeb Rahman et al., 2025; Nafisah & Muhammad, 2024). Sarawagi et al. (2024) further
reinforced these findings, demonstrating the potential of CNN architectures in streamlining
TB detection workflows in clinical settings. However, while CNN models have been widely
applied to radiographic images, their application to ZN-stained sputum smear microscopy
images remains underexplored. ZN-stained images present unique challenges such as non-
uniform staining, overlapping bacilli, and background noise, necessitating specialized ML
techniques tailored for effective feature extraction and classification.

Traditional TB diagnostic methods, such as ZN-stained microscopy, are prone to
human error, time-consuming, and suffer from variability in technician expertise, which
can impact the accuracy and reliability of diagnoses. While CNNs have been extensively
applied to various medical imaging tasks, their specific application to TB detection using
ZN-stained tissue sample microscopy images remains underexplored. Moreover, most
ML approaches in TB detection lack emphasis on optimizing pre-trained CNN models,
such as VGG16, to effectively address the unique challenges associated with ZN-stained
microscopy images, including variations in stain intensity and noise artifacts. This review
aims to bridge this gap by systematically analyzing and evaluating ML techniques tailored
for ZN-stained TB microscopy images, with a focus on pre-trained CNN models and their
optimization strategies.

To address these challenges, ML offers a transformative approach for TB diagnosis
by automating and standardizing image-based detection. DL models, particularly CNNs,
can analyze microscopy images with high precision, reducing the subjectivity associated
with manual analysis. Automated image analysis significantly reduces diagnosis time,
enabling rapid screening and early intervention. Additionally, ML models eliminate intra-
and inter-observer variability, ensuring consistent and reproducible diagnostic outcomes.
Al-driven diagnostic frameworks can be integrated into digital pathology systems, enabling
remote diagnostics and supporting telemedicine initiatives in resource-constrained regions.
Furthermore, this review provides a comparative analysis of existing ML-based approaches
for TB detection in ZN-stained images, highlights their strengths and weaknesses, and
discusses potential improvements in model training, feature selection, and generalization
performance. By systematically evaluating existing ML approaches and their applicability
to microscopy-based TB diagnosis, this study aims to bridge the gap between traditional
diagnostic techniques and modern computational advancements, ultimately contributing
to improved TB detection and disease management.

Traditional TB Diagnosis Approaches

TB remains a daunting worldwide health concern, despite substantial breakthroughs
in diagnostic technologies. From a clinical perspective, TB illness is evaluated using a
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complete medical assessment that includes a detailed medical history, physical examination,
and several types of diagnostic testing (Centers for Disease Control and Prevention [CDC],
2025). These tests typically include tuberculin skin tests (TST) or TB blood tests (interferon-
gamma release assays), chest radiography, and laboratory evaluations such as sputum smear
microscopy, mycobacterial culture, and molecular tests for drug resistance (Pai et al., 2016).
Nevertheless, a definitive diagnosis is based on laboratory procedures that directly detect
the presence of tuberculosis germs, most notably sputum smear microscopy and culture.
While mycobacterial culture is regarded as the gold standard because of'its great sensitivity,
it needs an incubation time of up to eight weeks, delaying treatment action (Liang et al.,
2022; McClean et al., 2024). Polymerase chain reaction (PCR)-based technologies, such
as the GeneXpert MTB/RIF test, provide quick detection and simultaneous drug resistance
profiling, but they are restricted by cost and resource restrictions in many endemic areas
(Horne et al., 2019).

ZN staining remains an important component of this diagnostic system, especially in
resource-limited situations. ZN-stained sputum smear microscopy is commonly used to
identify acid-fast bacilli (AFB) associated with Mycobacterium TB (Bhandari R, 2021;
Masali et al., 2021). The ZN staining method involves several key steps. First, carbol
fuchsin is applied to the sputum smear, which penetrates the lipid-rich cell walls of the
Mycobacterium tuberculosis (TB) bacteria, staining them red. Following this, an acid-
alcohol solution is used to decolorize the smear. This step removes the stain from non-
acid-fast organisms, leaving only the TB bacteria-stained red. Finally, methylene blue is
applied as a counterstain, providing a blue background that contrasts with the red-stained
TB bacteria, enhancing their visibility. This causes TB bacteria to appear as brilliant
red rods under a light microscope (Bayot et al., 2023; Dzodanu et al., 2019). Figure 3
illustrates the ZN-stained process (LaboratoryInfo, 2022), which is a successful approach
that is strongly reliant on the knowledge of the microscopist, resulting in possible inter-
observer variability and reduced sensitivity in cases with low bacterial load (Behr et al.,
2022; Zaporojan et al., 2024).

Manual examination of ZN-stained smears has been the cornerstone of TB diagnosis
in many regions due to its cost-effectiveness and simplicity. However, its accuracy is often
compromised by subjective interpretation and inter-observer variability (Perez-Siguas et
al., 2023). Despite these limitations, ZN-stained smear microscopy remains critical in high-
burden settings that lack advanced diagnostic technologies (Tummalapalli et al., 2024).
Automated image analysis systems have been developed to overcome these challenges.
These systems employ ML and computer vision techniques to analyze digital images of
ZN-stained smears, reducing diagnostic variability, expediting the screening process, and
maintaining high sensitivity and specificity (Bhaskar et al., 2023). Additionally, automation
facilitates digital archiving and remote consultation, which are valuable for large-scale
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Figure 3. Ziehl-Neelsen-stained process (LaboratoryInfo, 2022)

TB control programs (Shwetha et al., 2021). Although mycobacterial culture and PCR-
based assays like ARIMA offer higher sensitivity and rapid drug resistance detection, their
high costs and infrastructure requirements limit their widespread use in many endemic
areas (Campelo et al., 2021; Li et al., 2022). Therefore, ZN-stained smear microscopy,
particularly when enhanced with automated analysis, remains the frontline diagnostic tool
for TB screening due to its affordability and rapid turnaround. While previous reviews have
broadly examined ML applications in TB detection, most have focused on radiographic
images such as chest X-rays or molecular diagnostic methods. However, the application of
ML to ZN-stained sputum smear microscopy images remains underexplored. Thus, future
research should focus on further integrating automated image analysis with conventional
diagnostic workflows to optimize TB control strategies globally.

ML for TB Detection

TB remains a persistent global health challenge, prompting the exploration of innovative
diagnostic strategies that extend beyond conventional methods. Traditional techniques
such as sputum smear microscopy, mycobacterial culture, and PCR-based assays have
been instrumental in TB diagnosis. However, these methods often suffer from limitations.
Manual smear microscopy is hindered by subjectivity and inter-observer variability, culture
methods are time-consuming, and molecular techniques, though rapid, are expensive
and require sophisticated infrastructure (Afsar et al., 2018; Igbal et al., 2023). In recent
years, ML has emerged as a promising tool for improving TB diagnosis. DL techniques,
particularly CNN, have revolutionized medical image analysis by automatically learning
hierarchical features from complex data. Early research demonstrated the potential of
CNN in detecting TB from chest radiographs, with diagnostic accuracies exceeding 90%
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(Rajaraman et al., 2022). These encouraging results have spurred further investigation
into the use of ML to analyze both radiographic images and ZN-stained sputum smears.
However, while most prior reviews primarily focus on ML applications in chest X-ray
analysis, limited studies have systematically explored its use in ZN-stained microscopy
images, a gap that this review aims to address.

Subsequent studies have expanded on these findings, developed efficient deep network
architectures for ZN-stained microscopy images, reporting sensitivities and specificities
in the range of 90-95% (Tamura et al., 2024; Witarto et al., 2024). Saini et al. (2023)
further refined the approach by integrating segmentation and visualization techniques
into CNN frameworks, achieving robust detection accuracies near 93% across varied
datasets. These studies illustrate that automated analysis not only improves diagnostic
speed but also minimizes human error by providing consistent, objective assessments.
Moreover, hybrid approaches combining CNN-based feature extraction with traditional
classifiers, such as support vector machines (SVMs) or random forests, have been explored
to optimize decision boundaries and further enhance diagnostic performance (Hansun et
al., 2023). These methods have shown promise, with several studies reporting accuracies
comparable to or even surpassing standalone DL models. Despite these advances, challenges
remain. The availability of large, well-annotated datasets is critical for training DL models
effectively, and generalizability across diverse populations and imaging conditions is still
under investigation (Ahmed et al., 2023). Furthermore, variations in ZN-stained smear
characteristics, including stain intensity and background noise, remain a significant
hurdle that previous reviews have not extensively analyzed. Addressing these challenges,
this study provides a comparative analysis of different CNN architectures, particularly
pretrained models like VGG16, and evaluates their suitability for TB detection in ZN-
stained microscopy images. Additionally, the review explores optimization strategies for
feature extraction and classification, bridging the gap between traditional and Al-driven
diagnostic approaches.

Nevertheless, the integration of ML into TB diagnostics represents a significant step
forward, with potential applications ranging from automated screening in resource-limited
settings to digital archiving and remote consultation for large-scale TB control programs.
In summary, the application of machine learning, especially CNNs, has the potential to
revolutionize TB detection by offering rapid, accurate, and consistent diagnoses. As ongoing
research continues to refine these models and address existing challenges, ML-based
approaches are poised to become an integral component of global TB control strategies.
This review aims to provide a more targeted analysis of ML applications for ZN-stained
images, offering insights into dataset standardization, model generalization, and the real-
world feasibility of Al-assisted diagnostics, thereby setting it apart from earlier studies
that have focused mainly on radiographic imaging.
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Innovations in Medical Diagnostics in Malaysia

The exploration of DL applications in Malaysia has expanded across various fields,
particularly in medical diagnostics, agriculture, and engineering, highlighting the growing
impact of Al on improving operational efficiency and accuracy. Studies such as Hosain
et al. (2024) emphasize the parallels between structured learning approaches and DL
model development, particularly in enhancing diagnostic outcomes within the Malaysian
healthcare system. Awang et al. (2019) delve into the clinical determinants of severe
pulmonary tuberculosis, reinforcing the need for advanced techniques such as CNNs to
automate chest radiograph interpretation and improve TB diagnosis. Similarly, Toba et al.
(2020) demonstrate that DL models can outperform experienced clinicians in diagnosing
congenital heart disease from radiographic images, highlighting the potential of these
technologies in improving diagnostic accuracy across various medical conditions in
Malaysia. However, most DL studies in Malaysia focus on radiographic imaging (X-rays,
CT scans, and magnetic resonance imaging [MRI]), such as Kotei and Thirunavukarasu
(2024), while few have addressed the complexity of ZN-stained sputum smear microscopy.
Given the unique challenges posed by these images, such as variations in staining intensity
and the presence of artifacts, specialized CNN architectures are required to optimize
detection performance.

Beyond the healthcare sector, Lu et al. (2020) explore the efficacy of DL methods like
LSTMs combined with fully convolutional networks (FCNs) in brain signal processing,
underscoring their applicability to other domains, such as neurotechnology and healthcare
in Malaysia. Carvalho et al. (2023) further contribute to this narrative by demonstrating
how DL models can enhance feature classification accuracy, which could be applied to
school health services, ensuring better health outcomes for children in Malaysia. However,
unlike large-scale chest radiograph datasets, annotated ZN-stained smear microscopy
datasets are scarce in Malaysia. This necessitates innovative approaches such as transfer
learning, data augmentation, or synthetic dataset generation to improve model robustness
and generalizability across diverse clinical settings.

In medical imaging, Alaskar et al. (2019) show how DL models, such as Alex Net and
Google Net, can effectively detect ulcers in wireless capsule endoscopy (WCE) images,
offering valuable insights for broader healthcare applications, including TB diagnostics. Xie
et al. (2020) present a novel approach using a fully CNNs to detect pulmonary tuberculosis
lesions, achieving impressive diagnostic metrics, which are crucial for improving early
TB detection in Malaysia. The use of ensemble DL models for TB detection, as discussed
by Hwa et al. (2019). It also highlights the importance of leveraging innovative semi-
automated methods to differentiate between clinically pulmonary TB and lung cancer,
thus contributing to the effective management of TB in high-prevalence regions. However,
while CNNs have demonstrated effectiveness in various Malaysian healthcare applications,
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their direct applicability to TB detection in ZN-stained images remains underexplored.
Optimizing pre-trained models such as VGG16 specifically for smear microscopy is crucial
to improving sensitivity and specificity in this context.

Finally, Tiwari et al. (2023) extend the application of DL techniques into engineering,
specifically in fault diagnosis, emphasizing model robustness through dropout techniques,
which is essential for improving diagnostic accuracy across diverse sectors in Malaysia.
Collectively, these studies highlight the transformative potential of DL in Malaysia,
particularly in enhancing diagnostic accuracy, operational efficiency, and disease
management in healthcare, while also contributing to advancements in other critical fields,
such as agriculture and engineering. Moreover, Al adoption in Malaysia is still evolving,
with regulatory and infrastructural challenges. Discussing how automated TB detection
could be integrated into Malaysia’s public health policies or screening programs (e.g.,
leveraging mobile diagnostics for rural areas) enhances the practical relevance of Al-
driven approaches. These findings highlight the role of DL technologies in addressing the
unique challenges faced by Malaysia, positioning Al as a key tool in enhancing diagnostic
performance and public health outcomes.

METHODOLOGY

The analysis includes studies on tuberculosis and machine learning, with a focus on “ZN-
stained”. The queries returned to several journal and conference publications. This survey
solely considers peer-reviewed literature for systematic reviews. Table 1 shows the search
engines used, which included Google Scholar, Elsevier, and Springer. The number of
search results indicates the number of articles retrieved by search engines for the specified
keywords. The number of relevant articles denotes the number of items that passed the
initial screening procedure and were judged possibly relevant for a thorough assessment.
The bibliographic part of the papers was also examined. The method was iterated until no
further items were located.

Prospective research articles are 1
identified, screened, and chosen based on  Summary of search results and retrieved relevant
their eligibility. The Preferred Reporting ~ @/%icles

Items for Systematic Reviews and Meta- Number
) ] Datab . Number of frel ¢
Analyses (PRISMA) model, depicted in alabase engines arches 0 arr‘iii;:'s“
Flg}lre 4, .outhnes the overall publications Elsevier 1,006 20
reviewed in the research. It shows a step-by- Springer 217 10
step flow chart for the detection technique.  pubmed 240 2
Papers that were unrelated to ZN-stained  IEEE Xplore 100 6
(100 articles) were not considered. After ~ MDPI 200 4t
examining 156 publications, 39 were _Taylor & Francis 800 10
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Figure 4. PRISMA model for the depiction of inclusion and exclusion of records

discarded based on title and abstract analysis. The preprint version and duplicate
publications were also eliminated. After assessing the quality of published research, 102
papers were selected, with 150 discarded for not being research articles or relevant concepts.
As a result, 60 papers were chosen for a detailed assessment.

Tuberculosis Detection and Prediction Framework

A detailed methodology for tuberculosis detection and prediction using a hybrid ML
approach is presented in a framework. Figure 5 shows that the framework is structured
into four essential phases. In Phase 1, data collection and initial processing occur, during
which images of acid-fast bacilli are obtained from the clinical laboratory at Hospital
Puncak Alam. Phase 2, referred to as data development, involves refining and transforming
the raw dataset. This stage focuses on constructing a well-organized dataset suitable for
both training and validating predictive models by applying preprocessing techniques,
such as normalization, feature engineering, and data augmentation, to optimize model
performance. Phase 3 represents the core of the framework, where the prediction model
is trained and subsequently validated. Here, a CNN utilizing the VGG16 architecture is
employed. CNNs are particularly adept for this task due to their ability to discern subtle
color differences in images, which is a crucial factor, given that the ZN staining method
exploits the unique properties of the bacterial cell wall, rich in mycolic acid, rendering it
resistant to decolorization by acid-alcohol. This staining technique is critical for diagnosing
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Figure 5. The framework for modelling the tuberculosis detection and prediction on Ziehl-Neelsen-stained
slides using hybrid machine learning
Note. CNN = Convolutional neural network; TB = Tuberculosis; ZN = Ziehl-Neelsen

TB in clinical samples like sputum smears or tissue sections. Finally, the CNN model
leverages the meticulously curated and preprocessed dataset from Phase 2 to perform
accurate TB detection and prediction.

RESULTS AND DISCUSSION
Data Collection

The data for this study were obtained from the Clinical Diagnostic Laboratories (CDL)
at Hospital UI'TM Puncak Alam. ZN staining is a widely used technique in microbiology
and pathology for detecting acid-fast bacilli, particularly Mycobacterium tuberculosis. This
method capitalizes on the high mycolic acid content in bacterial cell walls, rendering them
resistant to acid-alcohol decolorization.

Despite its diagnostic importance, ) ) B =
analyzing ZN-stained samples remains a | S - C
labor-intensive process, requiring skilled "':.! , : i

professionals for accurate interpretation.

4

Figure 6 presents a sample of the dataset : '* :
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images is their inherent variability due
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Figure 6. One of the Ziehl-Neelsen-stained microscopy

images under 80x magnification using NDP.view2
Addressing these inconsistencies is crucial — software

contrast, and sample preparation techniques.
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for improving the robustness of automated TB detection models. Since the bacilli are
extremely small, measuring approximately 1 pm in size, a magnification of 40x or higher
was required to visualize them. As a result, a single glass slide could contain thousands
of images, with the bacilli appearing as red-colored rods. However, capturing and saving
these images was a time-consuming process, requiring meticulous effort to ensure proper
documentation and storage.

Comparison of Detecting TB Using ML

Recent advancements in ML have paved the way for automating TB detection, significantly
reducing the burden on healthcare professionals. CNNs have demonstrated exceptional
performance in medical image analysis by autonomously learning hierarchical features
from complex datasets. Initial studies on chest radiographs reported diagnostic accuracies
exceeding 90%, motivating further exploration of ML techniques for TB detection (Lakhani
& Sundaram, 2017).

Table 2 summarizes various ML models applied to TB detection. While many studies
focus on chest X-rays due to their rapid image acquisition and accessibility, relatively few
have explored the application of ML on ZN-stained images. The comparative analysis
reveals that most studies have leveraged CNN-based models, such as VGG16, ResNet,
and EfficientNet, achieving high accuracy levels. However, a key limitation is that ZN-
stained sample analysis requires extensive manual effort, limiting its widespread adoption
in automated diagnostic workflows. Despite this, automating ZN-stained smear analysis
could provide substantial benefits, particularly in resource-limited settings where access
to advanced imaging modalities is constrained.

Among the different ML architectures applied to TB detection, CNN-based models,
particularly VGG16, have consistently demonstrated superior performance. The high
accuracy of CNNs can be attributed to their ability to automatically extract and learn
hierarchical features from image data, reducing reliance on manual feature engineering.
However, deeper models such as ResNet and EfficientNet, while offering better feature
extraction, tend to require more computational power, making them less suitable for
real-time clinical deployment in resource-limited settings. Additionally, studies reporting
exceptionally high accuracy (up to 100%) raise concerns about potential overfitting,
particularly if models have been trained on small datasets without proper validation. Future
work should ensure rigorous evaluation using large-scale, diverse datasets and external
validation cohorts to confirm the generalizability of these models.

Challenges in ZN-Stained Image Processing

ZN-stained images present unique challenges for automated analysis compared to chest
X-rays. Variability in staining intensity, contrast, and background noise can impact model
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performance, leading to false positives or negatives (Shah et al., 2017). Traditional image
preprocessing techniques such as contrast enhancement, histogram equalization, and
denoising can mitigate these challenges to some extent. However, DL-based preprocessing
methods, such as generative adversarial networks (GANs) for image enhancement or self-
supervised learning for feature extraction, could provide more robust solutions. Another
major limitation is the presence of overlapping bacilli in ZN-stained smears, which can
confuse segmentation algorithms. Advanced segmentation models, such as U-Net and
Mask R-CNN, can be integrated into ML pipelines to enhance bacillus localization and
classification accuracy.

Clinical Integration and Real-World Applications

Although CNN-based models have demonstrated high accuracy, their integration
into clinical workflows remains a challenge. One major barrier is the lack of model
interpretability; clinicians need to understand why a model made a certain prediction.
Explainability techniques such as gradient-weighted class activation mapping (Grad-
CAM) and SHapley Additive exPlanations (SHAP) could enhance trust in Al-assisted
TB diagnosis by visualizing which image regions contributed to the model’s decision
(Narkhede, 2024). Additionally, regulatory considerations and ethical concerns must be
addressed before deploying Al-based TB detection in real-world settings. Ensuring fairness
and avoiding biases in Al models is crucial, especially when datasets are skewed towards
specific populations or biased by certain staining methods. Implementing human-in-the-
loop Al systems, where models assist rather than replace clinicians, could strike a balance
between automation and medical expertise.

While CNNs have dominated TB detection research, alternative approaches could
further enhance performance. Hybrid models that combine CNNs with traditional ML
classifiers, such as SVMs or random forests, have shown promise in improving diagnostic
accuracy (Narkhede, 2024). Moreover, transformer-based architectures, such as vision
transformers (ViTs), could offer superior feature representation for medical image analysis,
though their effectiveness on ZN-stained images remains largely unexplored. Self-
supervised learning, where models learn representations from unlabeled data, could also
be beneficial, especially given the limited availability of annotated ZN-stained datasets.
This approach has the potential to reduce dependency on large, labeled datasets while
improving model robustness.

Review of TB Detection on ZN-Stained Using ML

The review of TB detection using ZN-stained microscopy images through ML is
comprehensively summarized in Table 3. This review specifically focuses on research
studies that have utilized ZN-stained smear images as the primary data source for TB
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detection, in contrast to the more extensively studied chest X-ray (CXR) images. While
CXRs have been widely adopted in TB screening due to their accessibility and ease of
acquisition, ZN-stained smear microscopy remains the gold standard for bacteriological
confirmation of TB, particularly in low-resource settings. However, manual examination
of these smears by trained microbiologists is time-consuming, labor-intensive, and prone
to interobserver variability, leading to potential inconsistencies in diagnosis.

The table provides an overview of key research works in this domain, detailing essential
aspects such as the author(s), the type of sample used (i.e., ZN-stained sputum smear
images), the ML techniques and architectures employed, including CNNs, U-Net, hybrid
DL models, and other automated classification methods—and the reported performance
metrics, such as accuracy, sensitivity, and specificity. One of the primary challenges
associated with analyzing ZN-stained microscopy images stems from their inherent
characteristics, including low contrast, background noise, staining inconsistencies, and
the presence of artifacts, all of which can hinder the performance of traditional image-
processing approaches. Despite these challenges, the reviewed studies demonstrate that
well-designed machine-learning pipelines can achieve promising diagnostic accuracy,
typically within the range of 88 to 90%.

These findings suggest that automated TB detection from ZN-stained smears has
significant potential for clinical applications, particularly as a supportive tool to aid
pathologists and laboratory technicians in making diagnostic decisions. By leveraging DL
models trained on large-scale annotated datasets, such systems can enhance diagnostic
efficiency, reduce human error, and improve consistency across different laboratory
settings. Furthermore, the integration of ML-based TB detection into routine clinical
workflows could be particularly transformative in resource-limited regions where access
to skilled personnel and advanced diagnostic tools remains a significant barrier to timely
and accurate TB diagnosis. Table 3 presents a summary of relevant studies, highlighting
their methodologies, datasets, and outcomes, thereby providing a comparative analysis
of the current state in this field. This review underscores the growing importance of Al
in infectious disease diagnostics and reinforces the notion that automated image-based
TB detection could serve as a valuable adjunct to existing diagnostic methods, ultimately
contributing to global TB control efforts.

In summary, our review indicates that among the various ML models applied to TB
detection using ZN-stained images, CNN-based approaches have demonstrated the highest
performance. Some studies even report an accuracy of up to 100%. This remarkable level
of accuracy not only exceeds that of traditional ML methods and hybrid models but also
highlights the robustness of CNN in automatically extracting and processing complex
image features. Such outstanding performance provides a strong rationale for focusing
our research on CNN-based models, as they offer a reliable and efficient solution for
automated TB diagnosis.
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Table 3
Tuberculosis detection on Ziehl-Neelsen-stained slides using machine learning
Method / Technique ~ Samples  Accuracy (%) Novelty
CNN - VGG1e, 200 97 The usage of SqueezeNet for bacilli detection,
ResNet50, and images which achieves 97% accuracy with a lightweight
SqueezeNet (Shwetha model, is more efficient than VGG16 and ResNet50
et al., 2021) while maintaining excellent performance
Coarse (RGB) and Not 98.70 Integration of RGB thresholding and Sauvola's
fine (Sauvola) level described adaptive thresholding for TB bacilli segmentation,
segmentation (Samuel combined with shape descriptors for precise
& Baskaran, 2021) feature extraction, enables an automated and
efficient TB detection system that reduces manual
effort while improving sensitivity and specificity
Pat-Scan, scanner, and 2,000 99 Developing a digital pathology program for
software (Sua et al., images detecting and quantifying both typical and atypical
2021) mycobacteria in paraffin-embedded ZN-stained
tissues
HSV color space 51 images 78.68 A freely available, diverse dataset supporting
transformation and autofocusing, auto stitching, and bacilli
image segmentation segmentation,  which  enhances  algorithm
(Riza et al., 2022) development and validation for automated TB
detection
CNN (Zaizen et al., Not 98 Detecting AFB in bronchoscopy samples
2022) described demonstrates significantly higher sensitivity
(86%) compared to conventional bacteriological
tests (29%) for the TB diagnosis
CNN - AlexNet, Not 99 A simple three-layer convolutional neural
VGGNet-19, described network outperforms advanced transfer learning
ResNet-18, DenseNet, models like DenseNet and InceptionResNet-v2
GoogLeNet-incept-v3, for TB bacilli detection in ZN-stained images,
In-ceptionResNet-v2, highlighting the potential of lightweight CNNs for
and the classic automated diagnosis
three-layer model
(Shelomentseva &
Chentsov, 2021)
CNN - ResNet-18, 5,100 93.42 Demonstrating  that  AlexNet  outperforms
ResNet-50, and VGG-  images ResNet-18, ResNet-50, and VGG-16 in both
16 (Rachmad, 2024) accuracy (93.42%) and processing speed (5 min
52 s) for TB detection
CNN (Yang et al., 21,504 87.62 Developing an ML pipeline that combines two
2020) images CNN models with an active learning framework
and logistic regression, achieving high sensitivity
(87.13%) and specificity (87.62%) for AFB
detection
RegNetX4 (Zurac et al., 510 98.33 Developing a  high-performance  Al-based
2022) images mycobacteria identification method using a large
dataset of over 260,000 positive and 700 million
negative patches from 510 ZN-stained whole slide
images
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Table 3 (continue)

Method / Technique ~ Samples Accuracy (%) Novelty
CNN and SVM 1,000 97.60,97.90  ResNet-101 architecture combined with SVM for
(Rachmad et al., 2020)  images TB bacteria classification in ZN-stained images
CNN - VGG16 ~1,000 - Developing a hybrid DL model for tuberculosis
(Author’s ongoing images detection  using  ZN-stained  microscopy
work) images, integrating CNN architectures (such as

VGG16) while also exploring preprocessing and
segmentation techniques to enhance detection
performance

Note. CNN = Convolutional neural network; TB = Tuberculosis; ZN = Ziehl-Neelsen; RGB = Red Green Blue;
AFB = Acid-fast bacilli; HSV = Hue Saturation Value; SVM = Support vector machine; DL = Deep learning;
ML = Machine learning; Pat-Scan = Pathology scanner; Grad-CAM = Gradient-weighted class activation
mapping; SHAP = SHapley Additive exPlanations: RESNET = Residual network; VGG = Visual Geometry
Group; DenseNet = Densely connected convolutional network

Despite significant advancements in ML for TB detection, several challenges remain.
First, dataset biases, particularly in staining methods and image acquisition settings, can
affect model performance across different institutions. Future research should focus on
developing standardized datasets that encompass a diverse range of staining variations
to improve model generalization. Second, the lack of large-scale, publicly available
ZN-stained image datasets hampers progress in this field. Establishing collaborative
research initiatives to share anonymized datasets could facilitate better benchmarking
and validation of ML models. Federated learning, where models are trained across
multiple hospitals without sharing raw data, could be a promising approach to overcome
privacy concerns while improving model robustness. Lastly, real-time deployment of ML
models in clinical settings requires lightweight architectures that balance accuracy with
computational efficiency. Future research should explore model compression techniques
such as knowledge distillation or quantization to make CNN-based models more suitable
for deployment in resource-limited environments.

CONCLUSION

This comprehensive analysis researched 67 studies relating to machine learning-based TB
identification with ZN-stained microscope images. The results show that CNNs are the most
successful strategy, consistently outperforming classic ML models in feature extraction and
classification. The capacity of CNNs to identify minute patterns in microscope pictures
makes them an effective tool for automated tuberculosis diagnosis. Furthermore, this
paper emphasizes the importance of hybrid models, which combine CNNs with classical
classifiers such as SVMs or VGG16, demonstrating the potential for future performance
gains. The study also highlights the importance of image preprocessing methods, such
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as contrast enhancement and segmentation, in improving model accuracy. Compared to
prior reviews, this paper presents a more targeted investigation of ML algorithms applied
to ZN-stained microscopy pictures, shedding light on the strengths and limits of various
approaches.

Despite these developments, significant hurdles remain to establishing scalable and
clinically effective Al models for tuberculosis diagnosis. Future research should focus on
increasing dataset diversity to ensure models generalize across varied imaging conditions
and patient populations. Hybrid and explainable Al technologies can help to improve
model interpretability and clinician trust. Furthermore, real-world clinical validation and
deployment methodologies must be investigated to integrate Al-based TB diagnosis into
regular diagnostics. Addressing these problems will be crucial in enhancing the role of
ML in TB screening, ultimately leading to more accurate and efficient disease diagnosis
in global healthcare settings.
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